Feeds:
                                  Posts
                                  Comments

                                  app加速器

                                  In VI – Australia CanESM2, CSIRO, Miroc and MRI compared vs history we looked at how each model thought rainfall had changed in Australia over about 100 years, and we compared that to observations. We did this for annual rainfall, also for Australian summer (Dec, Jan, Feb) and Australian winter (Jun, Jul, Aug).

                                  Here we will look at two of the four emissions scenarios. We compare 2081-2100 vs 1979-2005.

                                  Note that we are not comparing the end of the 21st century from the model with observations at the end of the 20th century. That produces much different results – the model’s view of recent history doesn’t match observations very well. We are comparing the model future with the model past. So we are asking the model to say how it sees rainfall changing as a result of different amounts of CO2 being emitted.

                                  The two scenarios are:

                                  • RCP4.5 – with current trends continuing we are something like RCP6. I think of RCP4.5 as being “what we are doing now” but with some substantial reductions in CO2 emissions. But it’s nothing like RCP2.6, which is more “project Greta” where emissions basically stop in a decade
                                  • RCP8.5 – extreme CO2 emissions. Often described as “business as usual” perhaps to get people’s attention. Think – most of Africa moving out of abject poverty, not passing through the demographic transition (so population going very high) and burning coal like crazy with the efficiency of 19th century Europe.

                                  2021年度最受用户欢迎的10款应用 值得一试 - cnr.cn:2021-12-21 · 又快又免费的VPN 许多人对虚拟专用网络连接(VPN)的印象止步于设置繁琐,费用昂贵,事实真的是这样吗?不是的。曾经不被看好的Opera(Windows版本,Mac版本,Linux版本)在2021年抖擞精神,为用户开放了免费且的不限流量的VPN 通道,它不是新 ...

                                  电脑可用vpn

                                  Figure 1 – Click to expand

                                  And now the same, but only looking at Australian summer, DJF:

                                  Figure 2 – Click to expand

                                  Depending on which model you like, things could be really bad, or really good, or about the same with “climate change”.

                                  Note that the color scale I’m using here is the same as the last article, but different from all the earlier articles, the % range is from 50% to 150% (rather than 0% to 200%).

                                  电脑可用vpn

                                  vpn被封翻墙党该何去何从?App Store连接不上如何解决?(图 ...:2021-1-29 · 工信部回应vpn被封系合理管理 app商店连接不上如何解决 app商店连接不上 App Store连接不上怎么办?有业内人士表示,打不开一片白的原因是,AppStore使用到的其中一个域名s.mzstatic.com使用的证书已过期(测试中返回的是电信骨干网IP)。, Taylor, Stouffer & Meehl, AMS (2012)

                                  GPCP data provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from their Web site at http://psl.noaa.gov/

                                  GPCC data provided from http://psl.noaa.gov/data/gridded/data.gpcc.html

                                  CMIP5 data provided by the portal at http://esgf-data.dkrz.de/search/cmip5-dkrz/

                                  app加速器

                                  In V – CanESM2, CSIRO, Miroc and MRI compared we compared four models among themselves for two future scenarios of CO2 emissions, and also the four models compared with historical observations.

                                  Here we zero in on Australia. Let’s compare all months 1979-2005, i.e. recent history with around 100 years before that, all months 1891-1910 (note 1).

                                  This first figure is a % comparison. Each map is annual data: average 1979-2005 % of average 1891-1910. Note that the color scale I’m using here is different from previous articles, the % range is from 50% to 150% (rather than 0% to 200%).

                                  The left-most map is observations, GPCC, and on the right the four different models. Each of the four maps is one model, 1979-2005 as a % of that model for 1891-1910 – clockwise from top left, MPI, MIROC, CSIRO, CanESM2 (note 2):

                                  Figure 1 – Click to expand

                                  So we are seeing how well the models compare among themselves, and with observations, for a century or so change. All of the models are run with the identical set of conditions (the best estimate of forcings like CO2, aerosols, etc) – that’s what CMIP5 is all about.

                                  This second graphic is % comparison over Australian summer: December, January, February (DJF). It is otherwise exactly the same as the figure 1:

                                  电脑可用vpn

                                  Figure 2 – Click to expand

                                  苹果下架部分不符合规定的VPN应用程序_荔枝网新闻 ...:2021-7-30 · 据彭博社消息,苹果在中国应用商店下架部分不符合当地规定的VPN应用程序。”今天中国多家VPN提供商已收到了来自苹果公司的通知,通知主要告知了这些提供商和开发者,他伔的软件将从国区App Store中下架,因为这些软件包含了在中国不合法的 ...

                                  With the DJF comparisons, Australian summer observations across a century have the western half of Australia wetter, and coastal Queensland (that’s the right edge from halfway up) drier. Also some inland NSW regions drier.

                                  MPI and CSIRO show the western edge drier. Miroc and CAN show the western edge wetter. CSIRO has the Adelaide region and west much drier, observations show much wetter, CAN and MPI show this area a little wetter while Miroc has it about the same.

                                  It’s difficult to claim the summer model comparisons demonstrate any insight – given that we can check them against observations. And overall, these four models don’t demonstrate any particular biases, i.e., they don’t all agree with each other against the observations. Apart from inland western Australia where they fail to predict the much higher rainfall seen in observations.

                                  Place yourself back in 1900. You have these models, how useful are they for predicting 100 years ahead what would happen to summer rainfall?

                                  References

                                  An overview of CMIP5 and the experiment design, Taylor, Stouffer & Meehl, AMS (2012)

                                  GPCP data provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from their Web site at 电脑可用vpn

                                  GPCC data provided from http://psl.noaa.gov/data/gridded/data.gpcc.html

                                  CMIP5 data provided by the portal at http://esgf-data.dkrz.de/search/cmip5-dkrz/

                                  Notes

                                  Note 1: The choice of dates is constrained by:

                                  • 1891 being the start of the GPCC observational dataset
                                  • 修改Windows 10隐私设置的小教程_数码_福建网络广播电视台 ...:2021-8-10 · 除关注Windows 10收集并向微软返回哪些信息外,用户还应当了解PC或笔记本通过无线方式向移动设备发送的信息。默认状态下,“其他设备”隐私选项使Windows 10能自动地与用户的其他PC、平板电脑和智能手机连接并同步信息。
                                  • 2005 being the end date that this class of models ran to for their “historical” simulation – CMIP5 historical simulations were from 1850-2005

                                  As a result, lots of comparisons in climate papers involve 1979-2005, so even though we aren’t using satellite data here, I have been using that 27-year period.

                                  南京易安联 SSL VPN 远程连接系统:欢 迎 使 用 远 程 访 问 系 统 软 件 用户名 密 码 是否要保存用户名 登 录

                                  app加速器

                                  In the last article we looked at a comparison between Miroc (Japanese climate mode) and MPI (German climate model). See that article for more details.

                                  Now we add 电脑可用vpn and CSIRO-Mk3-6-0 to the comparison.

                                  CanESM2 is a Canadian climate model, with an ESM component – this is an earth system model, basically it means that CO2 emissions are explicitly controlled, but not the atmospheric CO2 concentration (so the model simulates aspects of the carbon cycle). Their model has 5 historical simulations and 5 each each of three RCPs (skipping RCP6 like many other CMIP5 contributors)

                                  CSIRO-Mk3-6-0 is an Australian model. Their model has 3 historical simulations and 10 each of the four RCPs.

                                  As in the previous article, MPI, Miroc, CAN and CSIRO for RCP4.5 for 2081-2100. Each graphic – the median of all of the simulations as % of the median of that model’s historical 1979-2005 simulations:

                                  Figure 1 – MPI, Miroc, CAN & CSIRO for RCP4.5 (%) – Click to expand

                                  And for RCP8.5 for 2081-2100

                                  Figure 2 – MPI, Miroc, CAN & CSIRO for RCP8.5 (%) – Click to expand

                                   

                                  And comparisons of each models’ historical runs (the median of multiple runs): % of observations (GPCC) over 1979-2005. So blue means the model over-estimates actual rainfall, whereas red means the model under-estimates:

                                  电脑可用vpn

                                  Figure 3 – MPI, Miroc, CAN & CSIRO historical runs compared with GPCC over the same 1979-2005 period – Click to expand

                                  Clearly a strong consensus.

                                  app加速器

                                  In Models and Rainfall – III – MPI Seasonal and 武雪梅:苹果下架VPN是法治的胜利 - huanqiu.com:2 天前 · 日前,苹果公司CEO蒂姆·库克回应苹果应用商店中国区将VPN下架一事说,我伔在遵守当地法律的情况下在当地开展生意。一些网民将此事与去年苹果就是否协助执法人员“解锁”加州南部圣贝纳迪诺恐怖袭击案枪手之一所持的手机,与美国联邦机构对簿公堂、甚至要向总统陈情的事件对比展开热议。 we looked at one model, MPI from Germany, from a variety of perspectives.

                                  In this article we’ll look at another model that took part in the last Climate Model Intercomparison Project (CMIP5) – Miroc5 from Japan and compare it with MPI.

                                  A reminder from an earlier article – the scenarios (Representative Concentration Pathways) in brief (and see van Vuuren reference below):

                                  • rcp2.6 – large reductions in CO2 emissions within a short space of time. Conceptual model – shutting off the world’s power stations, and no burning of fossil fuels, by 2030. Think: Project Greta
                                  • rcp 4.5 – substantial improvements in reducing CO2 emissions
                                  • rcp 6 – roughly where we will be in 2100 based on current trends
                                  • rcp 8.5 – extreme CO2 emissions, often misleadingly cited as “business as usual” (see Opinions and Perspectives – 3 – How much CO2 will there be? And Activists in Disguise and Opinions and Perspectives – 3.5 – Follow up to “How much CO2 will there be?”)

                                  Miroc5 (just called Miroc in the rest of the article) did five simulations of historical and three simulations of each RCP through to 2100.

                                  The first graphic has five maps: first, the median Miroc simulation of 1979-2005, followed by simulations of 2081-2100 for rcp2.6 to rcp8.5 (each one is the median of the three simulations):

                                  电脑可用vpn

                                  Figure 1 – Miroc simulations of historical 1979-2005 and the 4 RCPs in 2081-2100 – Click to expand

                                  The % change of the median Miroc simulation for each scenario from the median historical simulation:

                                  We can see a consistent theme through increasing CO2 concentrations.

                                  Figure 2 – Miroc simulations for RCPs 2081-2100 as % of Miroc historical 1979-2005 – Click to expand

                                  As the previous figure, but difference (future – historical):

                                  电脑可用vpn

                                  Figure 3 – Miroc simulations for RCPs 2081-2100 less Miroc historical 1979-2005 – Click to expand

                                  Side by Side Comparisons of MPI and Miroc Predictions

                                  And now some comparisons side by side. On the left MPI, on the right Miroc. Both are comparing RCP4.5 as a percentage of their own historical simulation (and both are the medians of the simulations):

                                  Figure 4 – MPI compared with Miroc for RCP4.5 (%) – Click to expand

                                  I think seeing the future less historical (as a difference rather than %) is also useful – in areas with very low rain the % difference can appear extreme even though the impact is very low. Overall, % graphs are more useful – if you live in an area with say 20mm of rainfall per month on average then -10mm might not show up very well on a difference chart, but it can be critical. But for reference, the difference:

                                  Figure 5 – MPI compared with Miroc for RCP4.5 (difference) – Click to expand

                                  Now the same two graphs for RCP8.5. On the left MPI, on the right Miroc. % of their historical simulation in each case:

                                  电脑可用vpn

                                  Figure 6 – MPI compared with Miroc for RCP8.5 (%) – Click to expand

                                  And now difference (future less historical) in each case:

                                  电脑可用vpn

                                  Figure 7 – MPI compared with Miroc for RCP8.5 (difference) – Click to expand

                                  Side by Side Comparisons of Models vs Observations

                                  In Part II we saw some comparisons of the MPI model with GPCC observations, both over the same 1979-2005 time period. Here is MPI (left) and MIROC (right) each as a % of GPCC:

                                  Figure 8 – MPI compared with Miroc for GPCC observations (%) – Click to expand

                                  It’s clear that different models, at least for now MPI and Miroc, have significant differences between them.

                                  References

                                  An overview of CMIP5 and the experiment design, Taylor, Stouffer & Meehl, AMS (2012)

                                  GPCP data provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from their Web site at http://psl.noaa.gov/

                                  GPCC data provided from http://psl.noaa.gov/data/gridded/data.gpcc.html

                                  CMIP5 data provided by the portal at http://esgf-data.dkrz.de/search/cmip5-dkrz/

                                  The representative concentration pathways: an overview, van Vuuren et al, Climatic Change (2011)

                                   

                                  app加速器

                                  In the last article we looked at the MPI model – comparisons of 2081-2100 for different atmospheric CO2 concentrations/emissions with 1979-2005. And comparisons between the MPI historical simulation and observations. These were all on an annual basis.

                                  This article has a lot of graphics – I found it necessary because no one or two perspectives really help to capture the situation. At the end there are some perspectives for people who want to skip through.

                                  In this article we look at similar comparisons to the last article, but seasonal. Mostly winter (northern hemisphere winter), i.e. December, January, February. Then a few comparisons of northern hemisphere summer: June, July, August. The graphics can all be expanded to see the detail better by clicking on them.

                                  电脑可用vpn

                                  Here we see the historical simulation over DJF 1979-2005 (1st graph) followed by the three scenarios, RCP2.6, RCP4.5, RCP8.5 over DJF 2080-2099:

                                  Figure 1 – DJF Simulations from MPI-ESM-LR for historical 1979-2005 & 3 RCPs 2080-2099 – Click to expand

                                  Win10怎么设置打印机共享 - Youth.cn:2021-12-11 · 青年之声-黑河嫩江伕明珠 1、点击Win10系统桌面上的控制面板,然后选择控制面板里的查看类型 2、将查看类型更改为小图标,然后点击“设备和打印机”, 3、在设备和打印机窗口中,选择一台你想要共享的打印机,然后在右键选择“打印机属性”。

                                  Figure 2 – DJF Simulations from MPI-ESM-LR for 3 RCPs in 2080-2099 minus simulation of historical 1979-2005 – Click to expand

                                  And the % change. The Saharan changes look dramatic, but it’s very low rainfall turning to zero, at least in the model. For example, I picked one grid square, 20ºN, 0ºE, and the historical simulated rainfall was 0.2mm/month, under RCP2.6 0.05mm/month and for RCP8.6 0mm/month.

                                  Figure 3 – DJF Simulations from MPI-ESM-LR for 3 RCPs in 2080-2099 as % of simulation of historical 1979-2005 – Click to expand

                                  I zoomed in on Australia – each graph is absolute values. The first is the historical simulation, then the 2nd, 3rd, 4th are the 3 RCPs as before:

                                  Figure 4 – DJF Australia – simulations from MPI-ESM-LR for historical 1979-2005 & 3 RCPs 2080-2099 – Click to expand

                                  Then differences from the historical simulation:

                                  Figure 5 – DJF Australia – Simulations from MPI-ESM-LR for 3 RCPs in 2080-2099 minus simulation of historical 1979-2005 – Click to expand

                                  Then percentage changes from the historical simulation:

                                  Figure 6 – DJF Australia – Simulations from MPI-ESM-LR for 3 RCPs in 2080-2099 as % of simulation of historical 1979-2005 – Click to expand

                                  And the same for Europe – each graph is absolute values. The first is the historical simulation, then the 2nd, 3rd, 4th are the 3 RCPs as before:

                                  Figure 7 – DJF Europe – simulations from MPI-ESM-LR for historical 1979-2005 & 3 RCPs 2080-2099 – Click to expand

                                  Then differences from the historical simulation:

                                  电脑可用vpn

                                  Figure 8 – DJF Europe – Simulations from MPI-ESM-LR for 3 RCPs in 2080-2099 minus simulation of historical 1979-2005 – Click to expand

                                  通讯数码 - 海峡社区 - 厦门网 - Powered by Discuz!:2021-5-16 · 电脑、手机、数码相机、数码摄像机、MP3一网打尽,分享潮流资讯,交流购买使用心得 GMT+8, 2021-4-24 00:32,Processed in 0.170692 second(s), 7 queries , Gzip On, APC On.

                                  Figure 9 – DJF Europe – Simulations from MPI-ESM-LR for 3 RCPs in 2080-2099 as % of simulation of historical 1979-2005 – Click to expand

                                  Now the global picture for northern hemisphere summer, June July August. First, absolute for the model for historical, then absolute for each RCP:

                                  Figure 10 – JJA Simulations from MPI-ESM-LR for historical 1979-2005 & 3 RCPs 2080-2099 – Click to expand

                                  男子因出售VPN被判有期徒刑三年 罚金10000元-中国法院网 ...:2021-10-9 · 男子因出售VPN被判有期徒刑三年 罚金10000 元 中国法院网首页 新闻 审判 执行 评论 时讯 法学 地方法院 论坛 博客 客户端 首页 >审判 > 刑事案件 一男子因出售VPN获刑 2021-10-09 09:30:43 | 来 …

                                  Figure 11 – JJA Simulations from MPI-ESM-LR for 3 RCPs in 2080-2099 minus simulation of historical 1979-2005 – Click to expand

                                  And the % change:

                                  电脑可用vpn

                                  Figure 12 – JJA Simulations from MPI-ESM-LR for 3 RCPs in 2080-2099 as % of simulation of historical 1979-2005 – Click to expand

                                  Modeled History vs Observational History

                                  As in the last article, how the historical model compares with observations over the same period but for DJF. The GPCC observational data on the left and the median of all the historical simulations from the three MPI models (8 simulations total) on the right:

                                  Figure 13 – DJF 1979-2005 GPCC Observational data & Median of all MPI historical simulations – Click to expand

                                  The difference, so blue means the model produces more rain than reality, while red means the model produces less rain:

                                  Figure 14 – DJF 1979-2005 Median of all MPI historical simulations less GPCC Observational data – Click to expand

                                  And percentage change:

                                  电脑可用vpn

                                  Figure 15 – DJF 1979-2005 Median of all MPI historical simulations as % of GPCC Observational data – Click to expand

                                  Some Perspectives

                                  Now let’s look at annual, DJF and JJA for how simulation compare with observations, this is median MPI less GPCC – like figure 13. You can click to expand the image:

                                  Figure 16 – Annual/seasons 1979-2005 Median of all MPI historical simulations less GPCC Observational data – Click to expand

                                  新京报APP_for_Android:新京报android客户端适用于哪些手机? 答:支持所有安装android系统的手机,分辨率为800*480、854*480、480*320、480*800、240x320的手机体验效果最佳。推荐机型:HTC的Desire HD、G1、G2、G3、G7、G8、DESIRE HD众及摩托罗拉的milestone。

                                  电脑可用vpn

                                  Figure 17 – DJF Compare model skill with projections of climate change for RCP2.6 & RCP8.5 – Click to expand

                                  So let’s look at it another way.

                                  Let’s look at the projected rainfall change for RCP2.6 and RCP8.5 vs actual observations. That is, MPI median DJF 2081-2099 less GPCC DJF 1979-2005:

                                  Figure 18 – DJF Compare model projections with actual historical – Click to expand

                                  And the same for annual:

                                  Figure 19 – Annual Compare model projections with actual historical – Click to expand

                                  Let’s just compare the same two RCPs with model projections of climate change (as they are usually displayed, future less model historical):

                                  电脑可用vpn

                                  Figure 20 – For contrast, as figure 19 but compare with model historical – Click to expand

                                  一个神奇的网站:2021-3-23 · 本站文章部分内容转载自互联网,供读者交流和学习,如有涉及作者版权问题请及时与我伔联系,众便更正或删除。感谢所有提供信息材料的网站,并欢迎各类媒体与我伔进行文章共享合作。

                                  If we look at California we see the same kind of progressive drying. But compare model projections with observations and we see more rainfall in California under both those scenarios.

                                  Of course, this just reflects the fact that climate models have issues with simulating rainfall, something that everyone in climate modeling knows. But it’s intriguing.

                                  家里宽带都没装 怎么就成了网络达人?-IT频道-国际在线:2021-11-12 · 前几天IG战队夺得全球冠军刷爆朋友圈,据说大学宿舍的场面还要精彩一些,而这件事也给大家科普了一件事:在互联网世界里,技术是客观存在的,只靠简单的金钱堆砌并不能解决问题,聪明人才能在网络世界里生活的更好。 大多数人对网络最朴素的愿望,是

                                  References

                                  An overview of CMIP5 and the experiment design, Taylor, Stouffer & Meehl, AMS (2012)

                                  GPCP data provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from their Web site at http://psl.noaa.gov/

                                  GPCC data provided from http://psl.noaa.gov/data/gridded/data.gpcc.html

                                  CMIP5 data provided by the portal at http://esgf-data.dkrz.de/search/cmip5-dkrz/

                                  The representative concentration pathways: an overview, van Vuuren et al, Climatic Change (2011)

                                  app加速器

                                  If you look at model outputs for rainfall in the last IPCC report, or in most papers, it’s difficult to get a feel for what models produce, how they compare with each other, and how they compare with observational data. It’s common to just show the median of all models.

                                  In this, and some subsequent articles, I’ll try and provide some level of detail.

                                  Here are some comparisons from a set of models from the Max Planck Institute for Meteorology. MPI is just one of about 20 climate modeling centers around the world. They took part in the Climate Model Intercomparison Project (CMIP5). As part of that project, for the IPCC 5th assessment report (AR5), they ran a number of simulations. Details of CMIP5 in the Taylor et al reference below.

                                  电脑可用vpn

                                  Here is the % change in rainfall – 2081-2100 vs 1979-2005 from one of the MPI models (MPI-ESM-LR) for 3 scenarios. The median of 3 runs for each scenario is compared with the median of 3 runs for the historical period, and we see the % change:

                                  Figure 1 – Simulations from MPI-ESM-LR for 3 RCPs vs simulation of historical – Click to expand

                                  The scenarios (Representative Concentration Pathways) in brief (and see van Vuuren reference below):

                                  • rcp2.6 – large reductions in CO2 emissions within a short space of time. Conceptual model – shutting off the world’s power stations, and no burning of fossil fuels, by 2030
                                  • rcp 4.5 – substantial improvements in reducing CO2 emissions
                                  • rcp 6 – not shown as they didn’t model it. This is probably roughly where we will be in 2100 based on current trends
                                  • rcp 8.5 – extreme CO2 emissions, often misleadingly cited as “business as usual” (see Opinions and Perspectives – 3 – How much CO2 will there be? And Activists in Disguise and 男子因出售VPN被判有期徒刑三年 罚金10000元-中国法院网 ...:2021-10-9 · 男子因出售VPN被判有期徒刑三年 罚金10000 元 中国法院网首页 新闻 审判 执行 评论 时讯 法学 地方法院 论坛 博客 客户端 首页 >审判 > 刑事案件 一男子因出售VPN获刑 2021-10-09 09:30:43 | 来 …)

                                  We can see that rcp 2.6 has some small reductions in rainfall in northern Africa, Middle East and a few other regions. RCP 8.5 has large areas of greatly reduced rainfall in northern Africa, Middle East , SW Africa, the Amazon, and SW Australia.

                                  So from a model only point of view the less emissions the better.

                                  It’s common to find that RCP6 is not modeled, something that I find difficult to understand. I understand that computing time is valuable but RCP6 seems like the emissions pathway we are currently on.

                                  Perhaps it should be explicitly stated that the simulation results of RCP4.5 and RCP6 are effectively identical – if that is in fact the case. That by itself would be useful information given that there is a substantial difference in CO2 emissions between them.

                                  I had a look at a couple of regions of interest – Australia:

                                  Figure 2 – Australia – Simulations from MPI-ESM-LR for 3 RCPs vs simulation of historical – Click to expand

                                  And Europe:

                                  Figure 3 – Europe – Simulations from MPI-ESM-LR for 3 RCPs vs simulation of historical – Click to expand

                                  Modeled History vs Observational History

                                  Here we compare the historical MPI model runs with observations (GPCC). MPI has 3 models and a total of 8 runs:

                                  • MPI-ESM-LR (3 simulations)
                                  • MPI-ESM-MR (3 simulations)
                                  • MPI-ESM-P (2 simulations)

                                  工信部再次回应中国VPN管理:依法依规企业和个人不 ...-厦门网:2021-7-26 · 在国务院新闻办今日(7月25日)举行的发布会上,工业和信息化部新闻发言人、总工程师张峰众及信息通信发展司司长闻库在回应VPN管理相关问题时 ...

                                  I compared the median of each model with GPCC over the last 27 years of the ‘historical’ period, 1979-2005:

                                  Figure 4 – The median of simulations from each MPI model vs observation 1979-2005 – Click to expand

                                  And the % difference of each MPI model vs GPCC over the same period:

                                  电脑可用vpn

                                  Figure 5 – The median of simulations from each MPI model, % change over observation 1979-2005 – Click to expand

                                  The different models appear quite similar. So let’s take the median of all 8 runs across the 3 models and compare with observations (GPCC) for clarity (the graph title isn’t quite correct, this is across the 3 models):

                                  Figure 6 – The median of simulations from all MPI models, % change over observation 1979-2005 – Click to expand

                                  The same, highlighting Australia:

                                  电脑可用vpn

                                  Figure 7 – Australia – median of simulations from all MPI models, % change over observation 1979-2005 – Click to expand

                                  And highlighting Europe:

                                   

                                  Figure 8 – Europe – median of simulations from all MPI models, % change over observation 1979-2005 – Click to expand

                                  I’m not trying to draw any big conclusions here, more interested in showing what model results look like.

                                  But the one thing that stands out in a first look, at least to me – the difference between the MPI model and observations (over the same time period) is more substantial than the difference between the MPI model for 2080-2100 and the MPI model for recent history, even for an extreme CO2 scenario (RCP8.5).

                                  If you want to draw conclusions from a climate model on rainfall, should you compare the future simulations with the simulation of the recent past? Or future simulations with actual observations? Or should you compare past simulations with actual and then decide whether to compare future simulations with anything?

                                  References

                                  An overview of CMIP5 and the experiment design, Taylor, Stouffer & Meehl, AMS (2012)

                                  GPCP data provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from their Web site at http://psl.noaa.gov/

                                  GPCC data provided from http://psl.noaa.gov/data/gridded/data.gpcc.html

                                  CMIP5 data provided by the portal at http://esgf-data.dkrz.de/search/cmip5-dkrz/

                                  The representative concentration pathways: an overview, van Vuuren et al, Climatic Change (2011)

                                  app加速器

                                  Here’s an extract from a paper by Mehran et al 2014, comparing climate models with observations, over the same 1979-2005 time period:

                                  电脑可用vpn

                                  From Mehran et al 2014

                                  Click to enlarge

                                  The graphs show the ratios of models to observations. Therefore, green is optimum, red means the model is producing too much rain, while blue means the model is producing too little rain (slightly counter-intuitive for rainfall and I’ll be showing data with colors reversed).

                                  You can easily see that as well as models struggling to reproduce reality, models can be quite different from each other, for example the MPI model has very low rainfall for lots of Australia, whereas the NorESM model has very high rainfall. In other regions sometimes the models mostly lean the same way, for example NW US and W Canada.

                                  For people who understand some level of detail about how models function it’s not a surprise that rainfall is more challenging than temperature (see Opinions and Perspectives – 6 – Climate Models, Consensus Myths and Fudge Factors).

                                  But this challenge makes me wonder about drawing a solid black line through the median and expecting something useful to appear.

                                  Here is an extract from the recent IPCC 1.5 report:

                                  电脑可用vpn

                                  Global Warming of 1.5°C. An IPCC Special Report

                                  I’ll try to shine some light on the outputs of rainfall in climate models in subsequent articles.

                                  电脑可用vpn

                                  Note: these papers should be easily accessible without a paywall, just use scholar.google.com and type in the title.

                                  Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations, Mehran, AghaKouchak, & Phillips, Journal of Geophysical Research: Atmospheres (2014)

                                  The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present), Adler et al, American Meteorological Society (2003)

                                  Hoegh-Guldberg, O., D. Jacob, M. Taylor, M. Bindi, S. Brown, I. Camilloni, A. Diedhiou, R. Djalante, K.L. Ebi, F. Engelbrecht, J. Guiot, Y. Hijioka, S. Mehrotra, A. Payne, S.I. Seneviratne, A. Thomas, R. Warren, and G. Zhou, 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)].

                                  The datasets are accessible in websites below – there are options to plot specific regions, within specific dates, and to download the whole dataset as a .nc file.

                                  GPCC – http://psl.noaa.gov/data/gridded/data.gpcc.html

                                  GPCP – http://psl.noaa.gov/data/gridded/data.gpcp.html

                                  app加速器

                                  I have just been looking at the 电脑可用vpn, using Matlab to extract and plot monthly data for different time periods including comparisons. I’d like to compare actual with the output of various climate models over similar time periods – and against future simulations under different scenarios.

                                  一个神奇的网站:2021-3-23 · 本站文章部分内容转载自互联网,供读者交流和学习,如有涉及作者版权问题请及时与我伔联系,众便更正或删除。感谢所有提供信息材料的网站,并欢迎各类媒体与我伔进行文章共享合作。

                                  What I’m looking for – monthly gridded surface precipitation.

                                  GPCC has 0.5ºx0.5º and 2.5ºx2.5º datasets that I’ve downloaded so the same gridded output from models would be wonderful.

                                  I have found:

                                  –  The CMIP5 Data is now available through the new portal, the Earth System Grid – Center for Enabling Technologies (ESG-CET), on the page http://esgf-node.llnl.gov/

                                  –  http://www.wcrp-climate.org/wgcm/references/IPCC_standard_output.pdf

                                  如何用Mac和iPhone超高效地学习?出国党必备-国际在线国广教育:2021-6-2 · 今天,为大家带来对于Mac和iPhone上的使用经验,希望帮助大家真正利用好自己手头的工具来让学习和生活更加便捷高效。首先是手机,先上图这是首页,和学习相关的要从第三行开始讲。Oxford 3000牛津大学出版社的官方App,把牛津3000

                                  CF standard_name; output; variable name;  units;  notes  –
                                  precipitation_flux; pr; kg m-2 s-1;   includes both liquid and solid phases.

                                  So I think this is what I am looking for.

                                  –  http://www.ipcc-data.org/sim/gcm_monthly/AR5/Reference-Archive.html gives a list of different experiments within each climate model. For example – the MPI model, I expect that historical and rcp.. are the ones I want. I would have to dig into MPI-ESM-LR and -MR which I assume are different model resolutions.

                                  But when I work my way through the portal, e.g. http://esgf-data.dkrz.de/search/cmip5-dkrz/ I find a bewildering array of options and after hopefully culling it down to just monthly rainfall from the MPI-LR model, there are 213 files:

                                  I can easily imagine spending 100+ hours trying to establish which files are correct, trying to verify.. So, if any readers have the knowledge it would be much appreciated.

                                  ————

                                  Just for interest, here are a few graphs produced from GPCC using Matlab. I checked a couple of outputs against samples produced from their website and they seemed correct.

                                  I set the max monthly rainfall on the color axis to increase contrast for most places in the world – 4 different 10-year periods:

                                  GPCC Precipitation data provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from their Web site at http://psl.noaa.gov/

                                  And a delta, % difference:

                                  GPCC Precipitation data provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from their Web site at http://psl.noaa.gov/

                                  电脑可用vpn

                                  The IPCC 5th Assessment Report (AR5) from 2013 shows the range of results that climate models produce for global warming. These are under a set of conditions which for simplicity is doubling CO2 in the atmosphere from pre-industrial levels. The 2xCO2 result. Also known as ECS or equilibrium climate sensitivity.

                                  The range is about 2-4ºC. That is, different models produce different results.

                                  Other lines of research have tried to assess the past from observations. Over the last 200 years we have some knowledge of changes in CO2 and other “greenhouse” gases, along with changes in aerosols (these usually cool the climate). We also have some knowledge of how the surface temperature has changed and how the oceans have warmed. From this data we can calculate ECS.

                                  This comes out at around 1.5-2ºC.

                                  Some people think there is a conflict, others think that it’s just the low end of the model results. But either way, the result of observations sounds much better than the result of models.

                                  The reason for preferring observations over models seems obvious – even though there is some uncertainty, the results are based on what actually happened rather than models with real physics but also fudge factors.

                                  The reason for preferring models over observations is less obvious but no less convincing – the climate is non-linear and the current state of the climate affects future warming. The climate in 1800 and 1900 was different from today.

                                  “Pattern effects”, as they have come to be known, probably matter a lot.

                                  And that leads me to a question or point or idea that has bothered me ever since I first started studying climate.

                                  Surely the patterns of warming and cooling, the patterns of rainfall, of storms matter hugely for calculating the future climate with more CO2. Yet climate models vary greatly from each other even on large regional scales.

                                  电脑可用vpn

                                  Opinions and Perspectives – 1 – The Consensus

                                  Opinions and Perspectives – 2 – There is More than One Proposition in Climate Science

                                  Opinions and Perspectives – 3 – How much CO2 will there be? And Activists in Disguise

                                  Opinions and Perspectives – 3.5 – Follow up to “How much CO2 will there be?”

                                  Opinions and Perspectives – 4 – Climate Models and Contrarian Myths

                                  Opinions and Perspectives – 5 – Climate Models and Consensus Myths

                                  Opinions and Perspectives – 6 – Climate Models, Consensus Myths and Fudge Factors

                                  Opinions and Perspectives – 7 – Global Temperature Change from Doubling CO2

                                  Opinions and Perspectives – 8 – Pattern Effects Primer

                                  Opinions and Perspectives – 8 – Pattern Effects Primer

                                  For people with maths, physics and chemistry (and biology) backgrounds non-linear processes are familiar. For people without this background they are often quite obscure.

                                  I’ll give a simple example. It’s not based on reality but it seems like the easiest way to explain non-linear effects.

                                  Here we go..

                                  Half the world is snow-covered land and half the world is ocean. Snow reflects about half of sunlight and ocean reflects no sunlight (this is not accurate, the actual figure is something like 10%, but we’ll stick with 0% for simplicity).

                                  We also have clouds in this world. Clouds reflect 100% of sunlight.

                                  Half of the sky has cloud cover. In our mythical world the land has cloudy skies and the ocean has clear skies.

                                  银川新闻网--第五届宁夏网络安全知识技能竞赛题库:2021-8-27 · 175. 数据安全包含可用性、完整性、保密性三个基本特性。 176. 公司对电脑密码的强壮度要求是: 字母加数字组合8位众上。 177. 员工离开自己的计算机时要立即设置锁屏。 178. 信息安全五大要素是: 保密性、真实性、完整性、可用性、不可

                                  Result – the mythical world absorbs 50% of solar radiation and so reaches some steady state temperature.

                                  Now some climate change takes place. The winds are stronger and all the clouds move over the ocean. So the ocean has cloudy skies and the land has clear skies. Now the land reflects 50% of its sunlight (because of the snow) and the ocean region – because it’s covered by clouds – reflects 100% of sunlight.

                                  Result – under the changed climate, the mythical world absorbs only 25% of solar radiation and cools dramatically

                                  The important point is that clouds still cover 50% of the skies, and the ocean and land haven’t changed. But simply moving the clouds halves the sunlight absorbed.

                                  A more realistic example is given by in Clouds & Water Vapor – Part Five – Back of the envelope calcs from Pierrehumbert which looks at regions of low humidity and high humidity.

                                  Articles in this Series

                                  官方客户端下载 - fjtv.net:2021-6-8 · Dashboard

                                  Opinions and Perspectives – 2 – There is More than One Proposition in Climate Science

                                  Opinions and Perspectives – 3 – How much CO2 will there be? And Activists in Disguise

                                  Opinions and Perspectives – 3.5 – Follow up to “How much CO2 will there be?”

                                  Opinions and Perspectives – 4 – Climate Models and Contrarian Myths

                                  Opinions and Perspectives – 5 – Climate Models and Consensus Myths

                                  Opinions and Perspectives – 6 – Climate Models, Consensus Myths and Fudge Factors

                                  Opinions and Perspectives – 7 – Global Temperature Change from Doubling CO2

                                  熊猫加速器官网入口  快连npv 下载  蓝灯 加速器  老王安卓加速器  ABC加速器APP官方下载  快连vp无限重制版  老王2024vpn